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Abstract

Background: Concordance between cortical atrophy and cortical glucose

hypometabolism within distributed brain networks was evaluated among cere-

brospinal fluid (CSF) biomarker-defined amyloid/tau/neurodegeneration (A/T/N)

groups.

Method: We computed correlations between cortical thickness and fluorodeoxyglu-

cose metabolism within 12 functional brain networks. Differences among A/T/N

groups (biomarker normal [BN], Alzheimer’s disease [AD] continuum, suspected non-

AD pathologic change [SNAP]) in network concordance and relationships to longitudi-

nal change in cognition were assessed.

Results: Network-wise markers of concordance distinguish SNAP subjects from BN

subjects within the posterior multimodal and language networks. AD-continuum sub-

jects showed increased concordance in 9/12 networks assessed compared to BN sub-

jects, as well as widespread atrophy and hypometabolism. Baseline network concor-

dancewas associatedwith longitudinal change in a compositememory variable in both

SNAP and AD-continuum subjects.

Conclusions: Our novel study investigates the interrelationships between atrophy

and hypometabolism across brain networks in A/T/N groups, helping disentangle the

structure–function relationships that contribute to both clinical outcomes and diag-

nostic uncertainty in AD.
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1 INTRODUCTION

In sporadic Alzheimer’s disease (AD), beginning years before clinical

symptom onset, a cascade of pathophysiological changes occur involv-

ing the aggregation of amyloid beta (Aβ) and tau proteins leading

to neurodegeneration.1 An ongoing challenge in the study of AD is

that of clinic-anatomical convergence, indicating the same clinical syn-

drome can be caused by different underlying pathological entities.2 To

this end, the “A/T/N” framework3 has emphasized biomarkers as ante

mortem predictors of AD pathology. Based on the presence/absence of

markers of Aβ (A), phosphorylated tau (T), and neurodegeneration (N)

in either the cerebrospinal fluid (CSF) or neuroimaging, the A/T/N clas-

sification schema results in three categories of biomarker abnormality:

biomarker “normal” (BN; A–T–N–), “AD continuum” (any A+ category),

and suspected “non-AD pathologic change” (i.e., SNAP, A– with either

T+ orN+). Among these categories, SNAPhas been proposed to repre-

sent a distinct pathological, clinical, and cognitive disease process from

AD.4,5 However, its cognitive profile, longitudinal trajectory, and post

mortem pathology remain less well understood.

Structural magnetic resonance imaging (MRI) and positron emis-

sion tomographywith 18F-fluorodeoxyglucose (18FDG-PET) have been

used to measure brain atrophy and glucose hypometabolism, respec-

tively. Multimodal analysis of anatomical and physiological change

allows for the development of dynamic models of pathophysiologi-

cal processes and can increase the power to characterize heterogene-

ity in clinical presentations of neurodegenerative disease processes.6

Multimodal neuroimaging can measure the degree to which signals

generated by each modality mirror the other in their strength, spa-

tial distribution, or temporal ordering.7 Termed “concordance,” these

markers have been used to directly compare patterns of brain atro-

phy and hypometabolism across different dementias.8,9 Bejanin et al.8

suggested that neurodegenerative disorders with a more unitary

underlying pathophysiological disease process (i.e., semantic demen-

tia due to TDP-43 Type C) may show higher concordance between

hypometabolism and atrophy compared to a more multidetermined

disease process (i.e., Aβ, tau in AD). However, prior studies measured

concordance at the whole-brain or whole-lobe level, providing only a

limited description of the link between structure and function in the

brain. Given neurodegenerative diseases are hypothesized to spread

along, and reflect damage to, large-scale brain networks spanningmul-

tiple regions,1,10 network-based characterization of multimodal neu-

roimaging features can improve our understanding of the disease pro-

cesses.

Studies have indicated that the neuroimaging patterns of corti-

cal atrophy and glucose hypometabolism observed in AD continuum

more closely resemble in vivo PET markers of tau than amyloid.11

While SNAP individuals have positive markers of tau pathology on

CSF, reported relationships between CSF phosphorylated tau (p-tau)

and tau-PET has ranged from mild to strong and may vary by dis-

ease stage and the presence of amyloid.12 Therefore, it is unclear

whether structure–function concordance will occur in SNAP subjects,

despite the observed relationship between tau and markers of neu-

rodegeneration in AD.11 This knowledge could aid in understanding

RESEARCH INCONTEXT

1. Systematic Review: Concordance of fluorodeoxyglu-

cose positron emission tomography and magnetic res-

onance imaging differentiate Alzheimer’s disease (AD)

from frontotemporal lobar dementia (FTLD), but prior

work focused on whole-brain analyses, despite evidence

that neurodegenerative disorders spread within circum-

scribed, selectively vulnerable brain networks. It remains

unclear whether network-wise multimodal concordance

can differentiate biomarker-normal individuals from AD

continuum and suspected non-AD pathologic change

(SNAP).

2. Interpretation: Findings support evidence that SNAP

is a heterogeneous group regarding etiology; however,

network-wise multimodal indicators of neurodegenera-

tion are superior for distinguishing SNAP from biomarker

normal subjects and for association with longitudinal

change inmemory.

3. Future Directions: Future research should examine

whether increased concordance within the select net-

works represents a potential biomarker of neuropatho-

logic change among SNAP individuals who progress to an

FTLD syndrome. Further, future work could also exam-

ine those who are only amyloid positive (e.g., A+T–N–) as

a distinct group or use data-driven measures of concor-

dance (e.g., canonical correlation) for additional computa-

tional power.

the causes of neurodegeneration among this understudied group and

provide information to allow treatment development that is tailored

to the pathophysiology of the disease. Here, we computed maps of

concordance between cortical atrophy andhypometabolismacross the

brain’s functional networks for each individual, compared acrossA/T/N

groups, and related themto longitudinal cognitive changes.Wehypoth-

esized that concordancewoulduniquely discriminate theA/T/Ngroups

and be more sensitive than unimodal measures to future cognitive

decline.

2 MATERIAL AND METHODS

2.1 Participants

Datawereobtained from theAlzheimer’sDiseaseNeuroimaging Initia-

tive (ADNI) database. ADNI was launched in 2003 as a public–private

partnership, led by principal investigator Michael W. Weiner, MD. The

primary goal of ADNI is to test whether serial MRI, PET, other biolog-

ical markers, and clinical and neuropsychological assessment can be

used to understand disease progression in mild cognitive impairment
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(MCI) and AD. Full details of participant recruitment, scanning proto-

cols, diagnostic criteria, as well as imaging and CSF data processing are

available at www.adni-info.org. ADNI protocols can be found in Jack

et al.13 andMueller et al.14 For this study,we included participantswho

had baseline CSF, structural MRI and 18FDG-PET data, and neuropsy-

chological testing data at both baseline and 12-month follow-up visits,

to measure cognitive change. Twelve months was selected as a follow-

up interval to retain the maximum number of participants and to allow

sufficient time for cognitive change.

CSF samples were analyzed at the University of Pennsylvania,

according to procedures and recommendations in the ADNI proce-

dures manual, using Elecsys CSF immunoassays. Elecsys assays are

fully automated, run on the Cobas e 601 analyzer (Roche Diagnos-

tics GmbH) and have been reported to avoid the observed interlabo-

ratory variation andupward drift of Aβ42 values seen in enzyme-linked

immunosorbent assays.15 BasedonCSFmeasures ofAβ1-42, phospho-
rylated tau 181 (p-tau), and total tau (t-tau), we first designated A/T/N

positivity using published cut-off points:16 Aβ1-42 < 977pg/mL for

A+/A–, p-tau > 23 pg/ml for T+/T–, and t-tau > 213 pg/ml for N+/N–.

We then designated the participants into the following A/T/N groups:

BN (participants whowere A–T–N–), AD continuum (amyloid-positive,

i.e., A+T–N–, A+T–N+, A+T+N–, A+T+N+), or SNAP (the remaining

amyloid-negative, i.e., A–T–N+, A–T+N–, A–T+N+).

2.2 Image processing

2.2.1 Structural MRI

ADNI MRI preprocessing included correction of geometric distortion,

non-uniformity normalization, and histogram-peak sharpening. We

processed all preprocessedMRI data with FreeSurfer v5.317 to gener-

ate cortical thickness measures with quality control by visual inspec-

tion. Erroneous segmentationswere correctedaccording toFreeSurfer

protocol. Sixteen scans were removed from further analysis due to

large or immutable errors (Figure S1 in supporting information). Four-

teen mm full width half maximum (FWHM) kernel was applied to the

cortical thickness data along the cortical surface.18 The cortical thick-

ness data were thenmapped onto the fsaverage template surface.

2.2.2 18FDG-PET

Detailed ADNI preprocessing for 18FDG-PET included co-registration,

averaging, standardizing spatial resolution, orientation and normaliza-

tion, and scanner-specific smoothing to achieve a uniform smoothing

level of isotropic 8 mm FWHM. We co-registered all preprocessed
18FDG-PET data with their respective MRI images using FSL-FLIRT,19

using nine degrees of freedom and normalized correlation as the cost

function. Cortical 18FDG-PET uptake values were then re-indexed to

the fsaverage template white surface and smoothed with a Gaussian

smoothing kernel of 14 mm FWHM to achieve the same effective

smoothness as the cortical thickness data.20

2.2.3 W-score maps

The above MRI and 18FDG-PET processing resulted in multimodal

vectors of cortical thickness and 18FDG-PET uptake, correspondingly

indexed over the fsaverage template surface and smoothed to the

same degree across all participants. Next, we computed vertex-wise

W-scores21 for cortical thickness and 18FDG-PET uptake to adjust

for the effects of normal aging (Figure 1A). W-scores were calculated

by fitting a general linear model (GLM) against age in a set of ref-

erence participants, and taking the standardized residuals generated

from this model for all participants:22 W = ([raw value] – [expected

value])/(standard deviation of the residuals of reference). For the refer-

ence set, we used cognitively normal individuals without a clinical diag-

nosis who do not progress to MCI or AD throughout the ADNI period

(see Popuri et al.23). In our sample, the reference set comprised 423

subjects, 53% female, with amean age of 74.4 (5.95).

2.3 Analyses

2.3.1 Participants

Differences in demographic and clinical variables across the A/T/N

groups were assessed with two-way analysis of variance (ANOVA) for

continuous data and Chi-square testing for categorical data, with post

hoc comparisons wherever relevant. See Table 1.

2.3.2 Network-wise unimodal atrophy,
hypometabolism, and multimodal concordance

Using the Human Connectome Project-MMP1 atlas24 that is based on

multimodal features including cytoarchitecture and functional connec-

tivity, the fsaverage template surfacewas parcellated into 360 patches

corresponding to select cortical vertices (Figure 1A). These patches

have been grouped into 12 functional networks by Ji et al.25 via a

community detection algorithm using resting-state data from healthy

adults.

For unimodal analysis, the mean W-scores of cortical thickness

and 18FDG-PET uptake within each network were calculated. Each

network-wise unimodal measure of cortical thickness and 18FDG-PET

uptake was entered into a separate GLMwith A/T/N group as themain

effect and sex, apolipoprotein E (APOE) ε4 status, Clinical Dementia

Rating scale Sum of Boxes (CDR-SB),26 and education as covariates.

Post hoc tests contrastedADcontinuumandSNAPgroupswithBN. For

each group pair, this produced a coefficient estimate and pooled stan-

dard error for group, fromwhich a t-statistic was calculated and visual-

ized as a color map on the overall average surface. In these and all sub-

sequent analyses described below, significance levels were corrected

for multiple comparisons by applying a false discovery rate (FDR) of

0.05.

For multimodal analysis, a concordance measure was calculated

for each individual as the Pearson correlation coefficient between

http://www.adni-info.org
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F IGURE 1 Sample participant to demonstrate methods used for the network concordance analyses. A,Within each individual, vertex-wise
magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET)W-Scores were parcellated into 360 cortical
patches, and in (B) Pearson correlations between FDG-PET hypometabolismwere computed per participant across the patches in each of 12
functional networks defined by Ji et al.25

TABLE 1 Table showing summary of demographic variables

BN SNAP AD continuum Post hoc test (P)

n: 179 n: 149 n: 559 P AD-C vs. BN SNAP vs. BN AD-C vs. SNAP

Age 71.22 (7.5) 73.51 (6.8) 73.61 (6.8) < .001 < .001 0.005 –

Male: Female 88:91 70:79 239:320 – – – –

Education 16.3 (2.6) 16.2 (2.6) 16.0 (3.1) – – – –

CDR-SB 0.63 (0.8) 0.94 (1.3) 2.0 (1.9) < .001 < .001 < .001

APOE ε4 Y: N 31:148 38:111 346:213 < .001 < .001 – –

MMSE 24–30 (1.4) 21–30 (1.9) 19–30 (2.8) < .001 < .001 – < .001

ADNI-Mem 0.92 (0.7) 0.65 (0.7) –0.058 (0.9) < .001 < .001 0.003 < .001

ADNI-EF 0.82 (0.8) 0.67 (1.0) –0.14 (1.3) < .001 < .001 – < .001

ATN subgroups 179 A–T–N– 102 A–T+N+ 355 A+T+N+

47 A–T–N+ 179 A+T–N–

25 A+T–N+

3 A+T+N–

Clinical diagnosis

(CN/MCI/dementia)

96/79/4 67/71/11 95/303/161 < .001

Aβ pg/ml 1551 (316) 1943 (575) 675 (201) < .001 < .001 < .001 < .001

P-tau pg/ml 15.9 (2.8) 28.9 (10.1) 31.5 (15.9) < .001 < .001 < .001 –

T-tau pg/ml 183 (30.1) 322 (97.6) 315 (144) < .001 < .001 < .001 –

n: 167 n: 139 n: 510

ADNI-Mem annual rate

of change

0.013a (0.01) –0.002 (0.01) –0.035 a (0.01) < .001 < .001 – 0.005

ADNI-EF annual rate of

change

0.02 a (0.1) 0.05 a (0.08) 0.003 (0.2) 0.007 – – 0.009

Notes: Results are reported as mean (std) for continuous variables or counts for discrete variables, and t-statistic and P-value for post hoc pairwise analyses
compared to BN subjects where ANOVA was significant. Age and education are reported in years. N’s for ADNI-Mem and ADNI-EF annual rate of change

reflect subjects with data for both baseline and 1-year assessments of neuropsychological function.
a For ADNI-Mem and ADNI-EF annual rate of change reflect significance in the direction change.

Abbreviations: Aβ, amyloid beta; AD,Alzheimer’s disease; AD-C,Alzheimer’s disease continuum;ADNI-EF, Alzheimer’sDiseaseNeuroimaging Initiative Exec-

utive FunctioningComposite; ADNI-Mem,Alzheimer’sDiseaseNeuroimaging InitiativeMemoryComposite; ANOVA, analysis of variance;APOE, apolipopro-
tein E; BN, biomarker normal; CDR-SB, Clinical Dementia Rating–Sumof Boxes; CN, cognitively normal ;MCI,mild cognitive impairment;MMSE,MiniMental

State Examination; p-tau, phosphorylated tau; SNAP, suspected non-Alzheimer’s disease pathologic change; t-tau, total tau.
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patch-wise W-scores of cortical thickness and 18FDG-PET uptake for

each network (Figure 1B). The main effect of A/T/N group and con-

trasts between AD continuum, SNAP, and BN groups on multimodal

network concordance were examined across all networks in the same

manner as for the unimodal measures described above. Analyses were

performed using theMATLAB 2018b27 package SurfStat (http://www.

math.mcgill.ca/keith/surfstat).28

2.3.3 Network concordance by cognitive screening
measure

Clinical heterogeneity exists within the A/T/N groups. Some individu-

als in AD continuum and SNAP may carry amyloid and tau pathologies

but exhibit normal levels of cognition (see Table 1 Mini Mental State

Examination [MMSE] range). The MMSE score of 26 has been shown

to be an optimal threshold for dementia screening with 72% sensitiv-

ity and 94% specificity.29 We therefore used this threshold to examine

network concordance in cognitively impaired (CI) andcognitivelyunim-

paired (CU) AD continuum and SNAP groups compared to unimpaired

BN individuals using a GLMwith age, sex, APOE ε4 status, CDR-SB, and
education as covariates.

2.3.4 Relationship to cognitive change

Cognition was assessed for each individual using composite scales for

memory and executive function (i.e., ADNI-Mem30 and ADNI-EF,31

respectively), calculated based on the ADNI neuropsychological bat-

tery.We calculated an annual rate of change forADNI-MemandADNI-

EF using linear mixed effects models. Age, sex, education, CDR-SB,

and APOE ε4 status were used as fixed effects, and random slope and

intercept were used for time. Differences in annual rates of change in

ADNI-Mem and ADNI-EF between groups were evaluated using two-

sample t-tests. Rates of change were then regressed against network

concordance across all networks with age, sex, education, APOE ε4 sta-
tus, and CDR-SB as covariates. To assess the contribution of concor-

dance beyond unimodal atrophy and hypometabolism alone, the mean

W-score of atrophy and hypometabolism were included as covariates.

Analyses were performed using R32 with the nlme package.33

3 RESULTS

3.1 Participants

At baseline, AD continuum (N = 559) and SNAP (N = 149) were older

than BN (N = 179) (P<.05). AD continuum showed the greatest fre-

quencyofAPOE ε4carriers (P<.001).MMSE,ADNI-Mem,ADNI-EF, and

1-year rate of change of ADNI-Memwere lower in AD continuum com-

pared to BN (all P<.001). Baseline ADNI-Memwas lower in SNAP com-

pared toBN (P<.01). No significant differenceswere detectedbetween

SNAP and BN on baseline ADNI-EF, ADNI-Mem rate of change, or

ADNI-EF rate of change. As expected, CSF measures of Aβwere lower
while p-tau and t-tau values were greater in AD continuum than in BN

(all P<.001). P-tau and t-tau values were greater, as expected, in SNAP

than in BN (all P<.001); however, CSF Aβ values were greater in SNAP
than BN (P<.001). See Table 1.

3.2 Network-wise patterns of cortical atrophy,
hypometabolism, and concordance among A/T/N
groups

Figure 2 displays the W-score maps of cortical atrophy,

hypometabolism, and concordance in each A/T/N group. Figure 3

displays comparisons of hypometabolism, atrophy, and concordance in

AD continuum and SNAP versus BN.While SNAP showed no network-

wise differences from BN in atrophy or hypometabolism, they showed

greater atrophy–hypometabolism concordance in the language and

posterior multimodal networks. AD continuum showed widespread

hypometabolism affecting all networks except the somatomotor,

primary and secondary visual networks, and cortical atrophy in all but

the somatomotor and primary visual networks. AD continuum also

showed increased concordanceamong secondary visual, somatomotor,

cingulo-opercular, dorsal attention, language, auditory, frontoparietal,

default mode, posterior and ventral multimodal networks. Regarding

effects of covariates,APOE ε4positivity resulted in increased FDG-PET
hypometabolism in all three groups among the secondary visual, dorsal

attention, and ventral multimodal networks. No other significant

effects of included covariates were noted.

Figure 4 shows comparisons of hypometabolism, atrophy, and con-

cordance in AD continuum and SNAP versus BN after additionally

controlling for clinical severity as measured by CDR-SB. Significant

effects of CDR-SB were seen across all modalities, groups, and net-

works. In this model, SNAP showed no significant differences from BN

in atrophy or hypometabolism but showed greater network concor-

dance in the language and posterior multimodal networks. AD con-

tinuum showed greater hypometabolism in the frontoparietal, default

mode, and posterior multimodal networks, and greater cortical atro-

phy in the ventral multimodal network only. AD continuum showed

increased concordance among all except the primary visual and orbito-

affective networks. Previously noted observed effects of APOE ε4 pos-
itivity remained significant in the analyses controlling for CDR-SB. Sig-

nificant differences between AD continuum and SNAP groups in uni-

modal and concordance measures, with and without CDR-SB included

as a covariate, can be found in Figure S2 in supporting information.

3.3 Network-wise concordance stratified by
cognitive screening impairment

Figure 5 displays comparisons of network-wise concordance in CU and

CI AD continuum and SNAP versus BN (BN-unimpaired, n = 158). The

CI SNAP (SNAP-CI, n = 28) showed significantly greater concordance

than BN-unimpaired in the dorsal attention, language, frontoparietal,

http://www.math.mcgill.ca/keith/surfstat
http://www.math.mcgill.ca/keith/surfstat
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F IGURE 2 Within-groupmeans of network-wise fluorodeoxyglucose positron emission tomography (FDG-PET) hypometabolism (A), cortical
atrophy (B), and concordance (C) among ATN subgroups, displayed on the brain (left images) and in graphical format (right). Alterations within
biomarker normal (BN; N= 179), suspected non-Alzheimer’s disease pathologic change (SNAP; N= 149), and Alzheimer’s disease continuum (N=

559) are expressed asmeanW-score within each network for FDG-PET and atrophy, andmean Pearson correlation for concordance

default mode, and ventral multimodal networks. CU SNAP (SNAP-CU,

n = 121) showed increased concordance compared to BN-unimpaired

in the posteriormultimodal network only. CI AD continuum (ADC-CI, n

=304) revealed significantly greater concordance thanBN-unimpaired

in all but the primary visual network. CU AD continuum (ADC-CU, n =

255) showed significantly greater concordance in the secondary visual,

dorsal attention, language, frontoparietal, and default mode networks

than BN-unimpaired.

3.4 Relationship of network concordance to
cognitive change

Among SNAP, increased concordance in the language network at base-

linewas associatedwith greater rate of decline inADNI-Mem (Figure6,

top left). InADcontinuum, greater baseline concordance in theprimary

visual, somatomotor, dorsal attention, language, frontoparietal, audi-

tory, defaultmode, andorbito-affective networkswere associatedwith

greater rates of decline in ADNI-Mem (Figure 6, top right), and greater

concordance in the secondary visual, dorsal attention, frontoparietal,

and auditory networks were associatedwith greater rates of decline in

ADNI-EF (Figure 6, bottom right). No relationships were found among

BN. Regarding effects of covariates on cognitive change, APOE ε4 pos-

itivity negatively impacted rate of ADNI-Mem decline among the AD

continuum group only.

4 DISCUSSION

Wepresent the first study to investigate network-wise concordance of

cortical atrophy and glucose hypometabolism, derived from structural

MRI and 18FDG-PET, respectively, among A/T/N biomarker groups.

Results revealed that compared to BN, concordance was significantly

increased in AD continuum across all except the primary visual and

orbito-affective networks, and SNAP showed greater concordance in

the language and posterior multimodal networks. These differences

remained statistically significant after accounting for clinical disease

severity.

Atrophy and 18FDG-PET hypometabolism may reflect distinct yet

complementary neurodegenerative processes.34 Studies show that

they each uniquely contribute to cognitive decline but also overlap in

critical “hub” regions of functional networks.35 In these regions, amy-

loid and tau may promote their synergistic deleterious effects36 and

“hub”-based connectivity models have been found to be predictive
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F IGURE 3 T-scores of false discovery rate–corrected significant networks in suspected non-Alzheimer’s disease pathologic change (SNAP; N
= 149) and Alzheimer’s disease (AD) continuum (N= 559) groups compared to biomarker normal (BN; N= 179) participants inW-score
transformed cortical thickness (top panel),W-score transformed fluorodeoxyglucose positron emission tomography (FDG-PET) hypometabolism
(middle panel), and network concordance (bottom panel) after controlling for sex, education, apolipoprotein E ε4. SNAP showed no significant
differences fromBN in atrophy or hypometabolism after multiple comparisons correction. SNAP showed increased network concordance
compared to BN in the language and posterior multimodal networks. AD continuum showedwidespread hypometabolism in all but somatomotor,
primary and secondary visual networks and significantly increased atrophy in all but somatomotor and primary visual networks. AD continuum
showed increased concordance among secondary visual, somatomotor, cingulo-opercular, dorsal attention, language, auditory, frontoparietal,
default mode, posterior, and ventral multimodal networks
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F IGURE 4 T-scores of false discovery rate–corrected significant networks in suspected non-Alzheimer’s disease pathologic change (SNAP; N
= 149) and Alzheimer’s disease (AD) continuum (N= 559) groups compared to biomarker normal (BN; N= 179) inW-score transformed cortical
thickness (top panel), fluorodeoxyglucose positron emission tomography (FDG-PET) hypometabolism (middle panel), and network concordance
(bottom panel) after controlling for sex, education, apolipoprotein E ε4, and Clinical Dementia Rating-Sum of Boxes. SNAP showed no significant
differences fromBN in atrophy or hypometabolism. SNAP showed increased network concordance compared to BN in the posterior multimodal
and language networks. AD continuum showed hypometabolism in all but somatomotor networks and significantly increased atrophy in all but
somatomotor and cingulo-opercular networks. AD continuum showed increased concordance among secondary visual, somatomotor,
cingulo-opercular, dorsal attention, language, auditory, frontoparietal, default mode, posterior, and ventral multimodal networks
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F IGURE 5 Left panel, T-scores of false discovery rate (FDR)–corrected significant networks of suspected non-Alzheimer’s disease pathologic
change cognitively unimpaired (SNAP-CU; N= 121) and cognitively impaired (SNAP-CI, N= 28) SNAP subjects compared to cognitively
unimpaired biomarker normal (BN; N= 158) subjects. Right panel, T-scores of FDR-corrected significant networks between cognitively
unimpaired (ADC-CU, N= 255) and cognitively impaired (ADC-CI, N= 304) AD continuum subjects compared to BN subjects

of longitudinal atrophy in AD37 and frontotemporal lobar degenera-

tion (FTLD) syndromes.38 These hubs have been proposed within the

default mode and frontoparietal cognitive control networks for AD,39

which in the present study showed strong concordance for AD contin-

uum. We also found a high degree of atrophy–hypometabolism con-

cordance in SNAP in the posterior multimodal network. The dorso-

medial parietal and posterior cingulate regions of this network con-

nect directly with the medial temporal areas that are vulnerable to

tau.40 This suggests that atrophy–hypometabolism synchrony may be

amarker of particular vulnerability to tau pathology among SNAP.

Our unimodal analyses showed the expected widespread atrophy

and hypometabolism in AD continuum, but little or no increased atro-

phy or hypometabolism in SNAP. This is consistent with prior research

when SNAP was defined by abnormality in CSF p-tau and t-tau.41 We

also showed that SNAP exhibited mild declines on MMSE and mem-

ory compared to BN and increased atrophy–hypometabolism concor-

dance in 2 out of 12 networks. Together, these results suggest that

SNAP as defined by CSFmay represent an early stage of the disease, in

which evidence of pathological effects are measurable only in the CSF

but not yet robustly in unimodal neuroimaging. Our results support the

hypothesis that CSF-positivity of tau and neurodegeneration markers

is likely an earlymarker along thepathological process leading to SNAP,

and concordance markers are superior to unimodal imaging for differ-

entiating fromBN at this early stage.

Our results showed robust increases in network concordance for

AD continuum and only in circumscribed networks for SNAP. The

etiology of this difference is likely multi-determined. First, AD con-

tinuum represent a group with greater disease burden than SNAP,

as evidenced by their cognitive and clinical severity scores and uni-

modal neuroimaging findings in the present study. Second, SNAP is
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F IGURE 6 T-scores of network-wise multivariate regressionmodel assessing for the effect on individual Alzheimer’s Disease Neuroimaging
InitiativeMemory Composite (ADNI-Mem) and Alzheimer’s Disease Neuroimaging Initiative Executive Function Composite (ANDI-EF) rate of
decline in suspected non-Alzheimer’s disease pathologic change (SNAP; N= 139) and Alzheimer’s disease (AD) continuum (N= 510), corrected for
age, sex, education, apolipoprotein E genotype, andmeanW-score of atrophy and hypometabolism. Top panel, ADNI-Mem: Significant networks
(colored) include language network in SNAP and primary visual, somatomotor, dorsal attention, language, frontoparietal, auditory, default mode,
and orbito-affective networks in AD continuum. There were no significant relationships to ADNI-Mem rate of change for biomarker normal (BN; N
= 167). Bottom panel, ADNI-EF: Significant networks (colored) for AD continuum include secondary visual, dorsal attention, frontoparietal, and
auditory networks. There were no significant relationships to ADNI-EF rate of change for SNAP or BN

hypothesized to be the result of multiple and/or heterogeneous neu-

ropathological processes that may target diffuse brain regions.4,5

These diffuse and heterogenous effects are contrasted with a more

harmonious neuropathological process driven by Aβ in AD continuum,

leading to higher concordance between atrophy and hypometabolism.

Thus, our findings support the likelihood that (CSF-defined) SNAP is

etiologically heterogenous. This view is supported by research demon-

strating that many non-AD neurodegenerative pathologies are com-

mon in the elderly, with α-synucleinopathies, non-AD tauopathies,

TDP-43 proteinopathy, and vascular lesions present in up to 50% of

samples.42 Given that SNAP in the present study showed elevated CSF

Aβ (indicating less Aβ pathology) compared to both AD continuum and

BN (P<.01; Table 1), it is unlikely that SNAP represent individuals on

the threshold of amyloid positivity, as has been previously suggested.43

Given the heterogeneity of the underlying clinicopathological pro-

file of SNAP, it is possible the current sample reflects a limited

degreeof true “Non-AD [neurodegenerative] pathology.”However, suf-

ficient noise from diffuse sources of neurodegeneration may also have

reduced concordance of atrophy and hypometabolism across several

networks.
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We further examined the heterogeneity in the A/T/N groups by

comparing cognitively “unimpaired” (MMSE> = 26) and “impaired”

(MMSE<26) participants. Compared to BN unimpaired, unimpaired

AD continuum showed greater concordance scores in the secondary

visual, dorsal attention, language, frontoparietal, and default mode

networks, while 11/12 networks in impaired AD continuum showed

higher concordance. In SNAP, the unimpaired showed increased con-

cordance only in the posteriormultimodal network, while interestingly

the impaired SNAP showed increased concordance across the dorsal

attention, language, frontoparietal, default mode, and ventral multi-

modal networks, in a pattern similar to AD continuum. The association

of concordancewith cognitive impairment suggests that a synchronous

loss of both gray matter structure and metabolism may signal the loss

of neuronal capacity that more effectively depletes cognitive reserve

and performance than either atrophy or hypometabolism alone.

Finally, we examined relationships of individual network concor-

dance measures to 1-year rates of change in cognitive composites

ADNI-Mem and ADNI-EF. For AD continuum, memory decline was

associated with increased concordance in the dorsal attention, lan-

guage, frontoparietal, and default mode networks at baseline, and

declines in executive functioning were associated with increased con-

cordance in the secondary visual, somatomotor, language, frontopari-

etal, and default mode networks. These results are consistent with

unimodal studies of atrophy and hypometabolism.44,45 We also found

that the language network showed an association to memory decline

in SNAP after accounting for the degree of unimodal atrophy and

hypometabolism. Many FTLD syndromes are known to affect the

language regions.46 Further, atrophy of the ventral, anterior, and

medial temporal cortices, which are part of the language network,

is seen in familial FTLD.47 Future research should examine whether

the increased concordance within the language network represents

a potential biomarker of neuropathologic change among SNAP who

progress to an FTLD syndrome.

Strengths of our study include the examination of concordance

at the level of functional brain networks, motivated by evidence

that neurodegenerative diseases target and spread along large-scale

brain networks.10 However, a limitation is that regions of peak con-

cordance may not respect network boundaries.48 Alternative, data-

driven measures of concordance may provide important information,

including canonical correlation or parallel independent components

analysis.49

Another strength of our study is the use of biomarker-defined

groupings, according to 2018 National Institute on Aging–Alzheimer’s

Association framework guidelines.3 However, limitations do exist in

this approach. There are multiple clinical diagnostic entities contained

within each group, and whether SNAP represents a distinct biological

entity is a matter of debate.50 Also, definitions of SNAP differ across

studies, including using CSF cut-offs,16 neuroimaging only,51 or CSF

biomarkers combined with neuroimaging.52 These approaches could

result in a high degree of variability in clinical or cognitive severity

within each A/T/N group, in particular the AD continuum, as up to

approximately one-third of cognitively normal older adults carry AD

neuropathologies.53 In addition to reporting cognitively impaired ver-

sus unimpaired, future studies could also examine those who are only

amyloid positive (e.g., A+T–N–) as a separate group.

In sum, our findings suggest that network-level measures of con-

cordance could differentiate SNAP and AD continuum from BN,

better than unimodal measures of cortical atrophy and 18FDG-PET

hypometabolism alone. Our findings on the Aβ-negative SNAP group

highlight the importance of abnormal markers of p-tau or neurodegen-

eration in the prediction of future cognitive change and suggest that

a coordinated relationship between neurodegeneration and cognitive

decline can occur in individuals without Aβ. Our findings further sup-

port the notion that multimodal neuroimaging analyses are essential

to studies of structure–function relationships that contribute to clini-

cal outcomes anddiagnostic uncertainty along thebiomarker spectrum

of AD.
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